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In order to select a suitable spatial filter for the spatial filtering velocimeter, the filtering characteristics of the
spatial filters with a rectangular window and rectangular transmittance are investigated by the power spectrum
of transmittance function method. The filtering characteristics of differential filters are investigated and com-
pared with that of common ones. The influences of the number of spatial periods on the spectral bandwidth,
deviation to central frequency, and peak transmittance are deeply analyzed. The results show that the influence
is due to the form of superposition of the signal components and other components, the pedestal and higher-order
components, and the superposition results from the finite size of the spatial filter. According to the results, a
method is proposed to compensate for the deviation to central frequency.
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Since it was proposed in about the 1960s by Ator, much
attention has been paid to spatial filtering velocimetry
(SFV) because of its simplicity and the stability of the op-
tical and mechanical system. The main research interest in
SE'V has been focused on the design of the spatial filter. In
SEF'V, periodic output signals carrying velocity information
are produced by the narrow-band frequency component
selected at f,p = £1 in the power spectrum of the spatial
filter’s transmittance function?, where f, is the spatial fre-
quency and p is the spatial period of the spatial filter.
Thus, the signal quality primarily depends on the filtering
characteristics of the narrow-bandpass peak in the power
spectrum.

The spatial filters mainly have three kinds of windows:
rectangular, circular, and Gaussian. Each window has sev-
eral transmittance functions, for example, sinusoidal and
rectangular transmittance functions. Filtering character-
istics of spatial filters with a circular window and sinusoi-
dal transmission have been analyzed?. In recent years,
image sensors or cameras have been widely applied2?,
and the use of an image sensor both as a spatial filter
and a photodetector has been introduced to SFV&LY.
The image-type spatial filter has a rectangular window
and a rectangular transmittance function if no weighting
function is applied. Spatial filters with a rectangular trans-
mission are much more complicated than filters with a
sinusoidal transmission since they have higher orders of
spatial frequency. Here we investigate the spatial filtering
characteristics, the spectral bandwidth, the central fre-
quency of the periodic signal component, and the peak
value of the transmittance in the power spectra of spatial
filters having a rectangular window and a rectangular
transmittance function.

Figure 1 shows the basic setup of a spatial filtering ve-
locimeter. A white light source is employed as the active
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illumination. The illuminated measured moving surface is
imaged onto the spatial filter by an object lens. The varia-
tion of the total intensity of surface image passes through
the spatial filter and is focused into a photodetector, where
it is converted to a temporal signal containing a frequency
f proportional to the object velocity v. This relationship
can be given as

v=pf/M, (1)
where p is the spatial period of the spatial filter and M is
the magnification of the imaging system.

A basic spatial filter is a set of parallel slits. Figure 2
shows the schematic diagram of a rectangular-type spatial
filter with a rectangular transmittance and its transmit-
tance function. It is assumed that the filter has a size of
X in the z direction, and a size of Y in the y direction.
Then the transmittance function can be given by

L (lp=%) so<(lp+g) —y <oy, —y<y<y,

=]

0, otherwise.
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Fig. 1. Basic setup of a spatial filtering velocimeter.
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Fig. 2. Schematic diagram of (a) a rectangular-type spatial filter
with rectangular transmittance and (b) its transmittance
function.

where [ is an integer, w is the width of the slits, and p is the
space of two neighboring slits. If p = 2w, the power
spectrum of A(z, y) can be deduced as?

1yt =22V ) PU L) + Han P ()
Hy(F,) = sinclf, V), (1)

Hx(f,) = sinc(f.X), %)

Hylf,) = f; " e )+ T
- (©

Hy,(f.) = sinc (me - 2mp_ ! X) , (7)
-H§mo;>=snm(er+—2m;‘1X), (8)

where f, and f, denote the spatial frequencies in the z
and y directions, respectively. Equations (7) and (8)
can be written as

Hy, (f) = sinc{[f,p — (2m — 1)]n}, (9)
Hy,,(f:) = sinc{[f,p + (2m — 1)]n}, (10)

where n = X /p is the number of spatial periods. Figure 3
shows the power spectrum of a rectangular-type spatial
filter with rectangular transmittance for n = 10. Figure 3
has peaks at f,p = +(2m — 1), but only the peaks at f,p =
+1 are used to detect velocities. That is to say, the spatial
filter selects the spatial frequency f, = 1/p. The peak at
fop =0, called the pedestal, resulting from Eq. (5), is not
useful and should be eliminated.

Generally, a differential spatial filter is used to eliminate
f:p=0. Figure 4 shows the schematic diagram of a
rectangular-type differential spatial filter with a
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Fig. 3. Power spectrum of a rectangular-type spatial filter with
rectangular transmittance for n = 10.

rectangular transmittance and its transmittance function.
The transmittance function can be given by

1, (lp—%)<z<(lp+9),—5 <z S% *%SyS%»
L, (p+$) <z<(lp+%),—5

0, otherwise.

h(l’,y)z

This type of differential filter can be constructed by an
image sensor™2. If p = 2w, the power spectrum of h(z, y)
can be deduced as

(7o d,) = 2 B G )R (FE, (12)
HXm fz i Ll)[ Xm(fL)+HX7n<f.’L')]'

(13)

A comparison of Egs. (3) and (12) indicates that the
pedestal components are eliminated by a differential
method. Figure 5 shows the power spectrum of a rectan-
gular type of differential spatial filter with a rectangular
transmittance for n = 10.

In both Figs. 3 and 5, the number of spatial periods is
specified as n = 10 since it has great impact on power
spectra. Figures 6 and 7 show, respectively, power spectra
for common and differential rectangular-type and rectan-
gular-transmission spatial filters with different spatial
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Fig. 4. Schematic diagram of (a) a rectangular-type differential
spatial filter with rectangular transmittance and (b) its transmit-
tance function.
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Fig. 5. Power spectrum of a rectangular-type differential spatial
filter with rectangular transmittance for n = 10.

periods n. It can be seen that the peaks around f,p = £1
are broadened and deviate from f,p = 41, which limits
the basic accuracy for measurements of the central fre-
quency in output signals. With increasing n, the band-
width becomes narrower and the deviation becomes less
significant. For the same value of n, the bandwidths in
the two figures are about the same. However, the peaks
in Fig. 7 deviate less compared with that in Fig. 6. This
means that a differential filter can reduce the deviation of
the spatial frequency as well as quadruple the peak trans-
mittance. Here we investigate the bandwidth and the
deviation of the central frequency for both common and
differential spatial filters and propose a method to
eliminate the influence of the deviation of the central fre-
quency. The dependence of the peak transmittance on the
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Fig. 6. Power spectra H,(f,,0) for a rectangular-type
rectangular-transmission spatial filter with n = 2, 4, 8, and 16.
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Fig. 7. Power spectra H,(f,,0) for a differential rectangular-
type rectangular-transmission spatial filter with n =2, 4, 8,
and 16.
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Fig. 8. Dependence of the specific bandwidth on the number of
spatial periods n for both common and differential filters.

number of spatial periods n for common and differential
filters is also discussed.

To evaluate the spectral bandwidth, a parameter D is
introduced as the bandwidth of the peak spectrum nor-
malized by the fundamental spatial frequency and is called
the specific bandwidth. In the power spectrum with f,p as
the z coordinate, D is the half-value full width of the peak
at f,p = £1. As seen from Figs. 6 and 7, D is decreasing
with increasing n. Figure 8 illustrates the dependence of
the specific bandwidth on the number of spatial periods
n for both common and differential spatial filters. The spe-
cific bandwidths of the two kinds of filters show no signifi-
cant difference. The relationship between n and D in a
differential filter is fitted as

D 0.8924. (14)
n

Equation (14) shows that n and D have an inversely
proportional relationship. Spectral broadening degrades
the selectivity of the spatial filter and limits the basic ac-
curacy for measurements of the central frequency in
output signals. In addition, under the condition of small
n and lower spatial frequency, spectral broadening makes
the peaks f,p=0 and f,p=+1 overlap significantly,
making it difficult to detect low frequencies. Thus, a large
number of n is desired, generally.

As shown in Figs. 6 and 7, the peaks deviate from
fzp = *£1, which means the deviation results from both
the pedestal components and the other orders of spatial
frequencies. Let us first discuss how the pedestal compo-
nents influence the deviation. Figure 9 shows the influence
of pedestal components f,p =0 on the deviation of the
central frequency f, = 1/p for n =2, 3, 4, and 5, respec-
tively. The signal component f,p =1 (shown by the red
curve) is calculated and plotted separately from the ped-
estal components f,p = 0 (shown by the green curve), and
the two of them are calculated and plotted together
(shown by the blue curve). The red curve shows that
the central frequency does not deviate from f, = 1/p at
all. However, because of the influence of the tails of
the pedestal components, it deviates to a higher frequency
for n =2 and 4, to a lower frequency for n =3 and 5.
The tails of the pedestal components gradually attenuate
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Fig. 9. Influence of pedestal components f,p=0 on the
deviation of the central frequency f, = 1/p. The signal (red
curve) and pedestal components (green curve) are separately cal-
culated and plotted. The two of them are plotted together by the
blue curve.

and the influence becomes less significant with increas-
ing n.

Figure 10 shows the influence of higher orders of spatial
frequencies (|f,p| = 3,5,7, ..) on the deviation of the cen-
tral frequency f, = 1/p for n = 2 and 4, respectively. The
signal component f,p = 1 (shown by the red curve) is cal-
culated and plotted separately from these higher orders of
spatial frequencies |f,p| = 3,5,7,... (shown by the green
curve), and the two of them are calculated and plotted
together (shown by the blue curve). The red curve shows
that the central frequency does not deviate from f, = 1/p
at all. However, because of the influence of the tails of the
higher orders of spatial frequencies, it deviates to a higher
frequency. The tails of the higher spatial frequencies
gradually attenuate and the influence becomes less signifi-
cant with increasing n.

In fact, the peaks of f,p = 1 themselves have inter-
actions. Figure 11 shows the interaction of f,p =1 and
f.p=—1 on the deviation of central frequency
fo = 1/p. The signal components f,p =1 (shown by the
red curve) and f,p=—1 (shown by the green curve)
are calculated and plotted separately, and the two of them
are calculated and plotted together (shown by the blue

Hxm(£,0)

Fig. 10. Influence of higher spatial frequencies on the deviation
of the central frequency f, = 1/p. The signal f,p = 1 (red curve)
and higher spatial frequencies (green curve) are separately cal-
culated and plotted. The two of them are plotted together by
the blue curve.

Fig. 11. Interaction of f,p =1 and f,p = —1 on the deviation of
central frequency f, =1/p. f,p=1 (red curve) and f,p=—1
(green curve) are separately calculated and plotted. The two
of them are plotted together by the blue curve.

curve). The red curve and green curve show the central
frequency does not deviate from f, = +1/p at all. How-
ever, because of the tails of f,p = —1 (f,p = 1), the central
frequency deviates from f,=1/p (f,=—1/p). The
tails of the two peaks gradually attenuate and the
influence becomes less significant with increasing n.

To sum up, because of the influences of the three factors
discussed above, namely the pedestal components f,p = 0,
higher orders of spatial frequencies, and the interaction of
fzp = £1 themselves, the selected spatial frequency f, de-
viates from 1/p, resulting in f,p > 1 or f,p < 1. However,
in Eq. (1) f,p = 1 is used. Therefore, the use of Eq. (1) to
calculate velocities will introduce inaccuracy.

To evaluate the deviation of the central frequency, a
deviation is defined by the peak deviation A(f,p) from

fop=1as
€= A(fop)- (15)

Table 1 shows the dependence and quantization of the
deviation € on the number of spatial periods n for both
common and differential filters. In both of the two filters,
the deviation is decreasing with increasing n. However,
deviation ¢ in differential filters is always above zero, while
in common filters the central frequency deviates to a lower
frequency and higher frequency, alternatively. It seems
that the pedestal components have a more significant in-
fluence on filters having an even number of spatial periods
than on filters having an odd number of spatial periods. In
differential spatial filters, for n > 14, the deviation from
the central frequency is less than 0.1%. Therefore, for
accurate measurement applications, it is recommended
that n > 14 in differential filters.

However, for common filters or for differential filters
when n < 13, Eq. (1) must be corrected to eliminate inac-
curacy introduced by the deviation of the central
frequency, as

1

U:mpf/Ma (16)

where € can be looked up in Table 1.
As shown in Figs. 6 and 7, the peak transmittance of
f» =1/p varies in both common and differential spatial
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Table 1. Dependence and Quantization of the Deviation
€ on the Number of Spatial Periods n for Both Common
and Differential Filters

Deviation of central frequency

n Common filter/e;  Differential filter/e, €1/&
2 0.1100 0.0410 2.68
3 —0.0358 0.0190 —1.88
4 0.0354 0.0110 3.22
5 —0.0125 0.0070 —1.79
6 0.0170 0.0054 3.15
7 —0.0063 0.0030 —2.10
8 0.0100 0.0027 3.70
9 —0.0037 0.0021 —1.76
10 0.0060 0.0017 3.53
11 —0.0025 0.0014 —1.79
12 0.0040 0.0012 3.33
13 —0.0017 0.0010 —1.70
14 0.0030 0.0009 3.33
15 —0.0012 0.0008 —1.50
16 0.0020 0.0007 2.86

filters. Consequently, the dependence of the peak value of
transmittance on the number of spatial periods n for both
common and differential filters is investigated, and the re-
sult is shown in Fig. 12. In common filters, the peak value
decreases with fluctuation, with increasing n; the differ-
ence of peak transmittance for small and large n is as
big as 25%. This mainly results from the tails of the ped-
estal components since the tails overlap the signal compo-
nents. In differential filters, the peak value decreases
without fluctuation, with increasing mn, and the
difference of the peak transmittance for small and large
n becomes very small. This mainly results from the tails
of higher orders of spatial frequency since the tails overlap
the signal components and the influence of these higher
orders is insignificant compared with that of the pedestal.
As discussed above, the comparison of Egs. (6) and (13)
indicates that the coefficients are doubled, so the coeffi-
cients in Eq. (12) for differential filters are four times that
of common ones. However, in Fig. 12, for small numbers of
n, the peak transmittance in differential filters is about
three times that of common ones, while for large numbers
of n, the multiple is about four. This difference is caused
by the tails of the pedestal components since for small n
the influence of the tails is significant.

In conclusion, the spatial filtering characteristics of the
spatial filters with a rectangular window and a rectangular
transmittance in SFV are analyzed theoretically. By

0.52
1.66}

» 0.48

2

<

>

% 0.44 1.64

zo

0.4 1.62
0 0

Number of spatial period n

Fig. 12. Dependence of the peak value of transmittance on the
number of spatial periods n for (a) common and (b) differential
filters.

comparison of the analysis results of common and differ-
ential filters it is found that in common filters the trans-
mittance of the signal frequency is mostly influenced by
the pedestal components, while in differential ones it is in-
fluenced by higher orders of spatial frequency and the sig-
nal components themselves. The pedestal components are
more influential than other orders of spatial frequency.
The filtering characteristics, bandwidth broadening,
deviation from central frequency, and variation of peak
value of transmittance result from the finite size of the spa-
tial filters or finite number of spatial period. The finite size
makes every order of spatial frequency have tails that
overlap each other. These tails gradually attenuate with
increasing m, and the overlap becomes less significant.
Therefore, a big number of spatial period leads to a narrow
bandwidth, small deviation to a central frequency and a
small peak transmittance. In practical use, a big n is rec-
ommended. What is more, the deviation to a central fre-
quency is quantized and a correction to the equation
v = pf/M is proposed to eliminate the deviation, making
the measurement more accurate.
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